Generalized Eilenberg Theorem I: Local Varieties of Languages

نویسندگان

  • Jirí Adámek
  • Stefan Milius
  • Robert S. R. Myers
  • Henning Urbat
چکیده

We investigate the duality between algebraic and coalgebraic recognition of languages to derive a generalization of the local version of Eilenberg’s theorem. This theorem states that the lattice of all boolean algebras of regular languages over an alphabetΣ closed under derivatives is isomorphic to the lattice of all pseudovarieties ofΣ-generated monoids. By applying our method to different categories, we obtain three related results: one, due to Gehrke, Grigorieff and Pin, weakens boolean algebras to distributive lattices, one due to Polák weakens them to join-semilattices, and the last one considers vector spaces over Z2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small Conjunctive Varieties of Regular Languages

The author’s modification of Eilenberg theorem relates the so-called conjunctive varieties of regular languages with pseudovarieties of idempotent semirings. Recent results by Pastijn and his co-authors lead to the description of the lattice of all (pseudo)varieties of idempotent semirings with idempotent multiplication. We describe here the corresponding 78 varieties of languages.

متن کامل

An Eilenberg–like Theorem for Algebras on a Monad

An Eilenberg–like theorem is shown for algebras on a given monad. The main idea is to explore the approach given by Bojańczyk that defines, for a given monad T on a category D, pseudovarieties of T–algebras as classes of finite T–algebras closed under homomorphic images, subalgebras, and finite products. To define pseudovarieties of recognizable languages, which is the other main concept for an...

متن کامل

On the Varieties of Languages Associated with Some Varieties of Finite Monoids with Commuting Idempotents

Eilenberg has shown that there is a one-to-one correspondence between varieties of finite monoids and varieties of recognizable languages. In this paper, we give a description of a variety of languages close to the class of piecewise testable languages considered by I. Simon. The corresponding variety of monoids is the variety of J -trivial monoids with commuting idempotents. This result is the...

متن کامل

An Eilenberg Theorem for Arbitrary Languages

In algebraic language theory one investigates formal languages by relating them to finite algebras. The most important result along these lines is Eilenberg’s celebrated variety theorem [7]: varieties of languages (classes of regular finite-word languages closed under boolean operations, derivatives and preimages of monoid morphisms) correspond bijectively to pseudovarieties of monoids (classes...

متن کامل

Unveiling Eilenberg-type Correspondences: Birkhoff's Theorem for (finite) Algebras + Duality

The purpose of the present paper is to show that: Eilenberg–type correspondences = Birkhoff’s theorem for (finite) algebras + duality. We consider algebras for a monad T on a category D and we study (pseudo)varieties of T– algebras. Pseudovarieties of algebras are also known in the literature as varieties of finitealgebras. Two well–known theorems that characterize varieties and pseudovarie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014